Useful formulas and constants


Flux densities to the brightness temperature

The brightness temperature of a source is defined as T,

$$ \begin{equation} T = \frac{\lambda^2 S}{2 k \Omega}. \end{equation} $$

Here $S$, $\lambda$ and $\Omega$ are the flux density, wavelength of observation and angular extent of the resolution. Note that all units are in MKS.
k=1.38$\times 10^{-23} J/K$
Units of S is $J m^{-2} s^{-1}$
Units of $\lambda$ is $m$
Units of $\Omega$ is $str$
We rewrite the $\Omega$ in terms of major and minor axis of the beam as, $\Omega = \frac{\pi \theta_{min} \theta_{maj}}{4 ln(2)}$. Now, we simplify equation for T keeping it in MKS units. $$ T(K) = \frac{\lambda(m)^{2} S(J m^{-2} s^{-1})}{2\times 1.38 \times 10^{-23} (J/K) \Omega (str)} \\ T(K) = \frac{\lambda(m)^{2} S(J m^{-2} s^{-1})}{2\times 1.38 \times 10^{-23} (J/K)} \times \frac{4 ln(2)}{\pi \theta_{min}(rad) \theta_{maj}(rad)} \\ T(K) = \frac{\lambda(m)^{2} S(J m^{-2} s^{-1})}{\theta_{min}(rad) \theta_{maj}(rad)} \times \big(\frac{4 ln(2)}{\pi \times 2\times 1.38 \times 10^{-23}}\big) \\ T(K) = (0.32\times 10^{23})\times\frac{\lambda(m)^{2} S(J m^{-2} s^{-1})}{\theta_{min}(rad) \theta_{maj}(rad)}\\ $$ Note that all units are MKS. In a radio telescope when observing through a beam, the flux density changes to flux density per beam. The 'pear beam' is mentioned to specify that you are looking through a beam. If you convert units of $\Omega$ from $str$ to $arcsec^2$, the units of flux density per beam remain same, i.e $S (J m^{-2} s^{-1}) \to S(J m^{-2} s^{-1}/beam)$. Now we simplify more, $rad \to arcsec$, $(J m^{-2} s^{-1})\to Jy$, $m\to cm$.
$1 Jy = 10^{-26} J m^{-2} s^{-1} Hz^{-1}$. (Note we use spectral flux density in radio astronomy)
$1 arcsec = 4.85\times 10^{-6} rad$ $$ T(K) = (0.32\times 10^{23})\times\frac{10^{-4}\times \lambda(cm)^{2} 10^{-26}S(Jy/beam)} {4.85\times 10^{-6} \theta_{min}(arcsec) \times 4.85\times 10^{-6} \theta_{maj}(arcsec)}\\ T(K) = \big(\frac{(0.32\times 10^{23})\times 10^{-4}\times 10^{-26}}{(4.85\times 10^{-6})^2}\big)\times\frac{ \lambda(cm)^{2} S(Jy/beam)} {\theta_{min}(arcsec) \times \theta_{maj}(arcsec)}\\ T(K) = 1.36\times 10^3 \frac{ \lambda(cm)^{2} S(Jy/beam)} {\theta_{min}(arcsec) \times \theta_{maj}(arcsec)}\\ T(K) = 1.36 \frac{ \lambda(cm)^{2} S(mJy/beam)} {\theta_{min}(arcsec) \times \theta_{maj}(arcsec)}\\ $$ If we express in frequency $\nu (GHz)$, we get $$ T(K) = 1.36 \frac{ (\frac{c (cm/s)}{\nu(Hz)})^{2} S(mJy/beam)} {\theta_{min}(arcsec) \times \theta_{maj}(arcsec)} \\ T(K) = 1.36 \frac{ 9\times 10^{20}\times S(mJy/beam)} {10^{18}\times\nu(GHz)^2\theta_{min}(arcsec) \times \theta_{maj}(arcsec)} \\ T(K) = 1224 \frac{ S(mJy/beam)} {\nu(GHz)^2\theta_{min}(arcsec) \times \theta_{maj}(arcsec)} \\ $$

Math in TeX notation

When $a \ne 0$, there are two solutions to \(ax^2 + bx + c = 0\) and they are $$x = {-b \pm \sqrt{b^2-4ac} \over 2a}.$$ $$ \begin{array}{rcll} y & = & x^{2}+bx+c\\ & = & x^{2}+2\times\dfrac{b}{2}x+c\\ & = & \underbrace{x^{2}+2\times\dfrac{b}{2}x+\left(\frac{b}{2}\right)^{2}}- {\left(\dfrac{b}{2}\right)^{2}+c}\\ & & \qquad\left(x+{\dfrac{b}{2}}\right)^{2}\\ & = & \left(x+\dfrac{b}{2}\right)^{2}-\left(\dfrac{b}{2}\right)^{2}+c & \left|+\left({\dfrac{b}{2}}\right)^{2}-c\right.\\ y+\left(\dfrac{b}{2}\right)^{2}-c & = & \left(x+ \dfrac{b}{2}\right)^{2} & \left|\strut(\textrm{vertex form})\right.\\ y-y_{S} & = & (x-x_{S})^{2}\\ S(x_{S};y_{S}) & \,\textrm{or}\, & S\left(-\dfrac{b}{2};\,\left(\dfrac{b}{2}\right)^{2}-c\right) \end{array} $$